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The results given by Brenner & Cox (1963) for the resistance of a particle of 
arbitrary shape in translation at small Reynolds numbers are generalized. Thus 
we consider here a single particle of arbitrary shape moving with both translation 
and rotation. in an infinite fluid, the Reynolds number R of t h e b i d  motion being 
assumed small. With the additional assumption that the motion is steady with 
respect to some inertial frame of reference, we calculate both the force and couple 
on the body as an expansion in the Reynolds number to O(R21nR). This force 
and couple are expressed entirely in terms of various Stokes flows for the given 
body in rotation or translation. 

A discussion is given of the form taken by the formulae for the force and couple 
for cases in which the body possesses symmetry properties. Quantitative results 
are obtained for both a spheroid and a dumb-bell-shaped body in pure translation 
and also for a translating rotating sphere and for a dumb-bell-shaped body in 
pure rotation. 

The application of the general results to ' quasi-steady ' problems is considered, 
with particular reference to a freely falling spheroid (of small eccentricity) which 
is shown to orientate itself so that it is broad-side on to its direction of motion. 

Finally the general results are compared with those that would be obtained 
by the use of the Oseen equations. By consideration of a particular example it 
is shown that the Oseen equations do not in general give the correct value of the 
force on the body to O(R). 

1. Introduction 
We consider a solid body of arbitrary shape undergoing uniform translation 

and/or rotation in an infinite incompressible fluid, the Reynolds number (R) of 
the fluid motion being small. For particular body shapes, the value of the force 
and couple acting on the body have been given as an expansion in the Reynolds 
number to O(R2InR). Thus Proudman & Pearson (1957) andBreach (1961) have 
respectively calculated the force acting on a sphere and an ellipsoid in pure 
translation, whilst Rubinow & Keller (1961) have given the force and couple 
acting upon a rotating translating sphere, the direction of translation being 
perpendicular to the axis of rotation. Brenner & Cox (1963) gave the force to 
O(R21n R) on a body of arbitrary shape in pure translation, giving their result in 
terms of the Stokes flows for the body in translation in any three non-coplanar 
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directions. We consider here the more general problem of the calculation of the 
force F and couple G on a body of arbitrary shape which is undergoing a general 
motion consisting of a translation and/or a rotation, subject only to the restric- 
tion that the resulting fluid motion be steady relative to some inertial frame of 
reference. The computation of this force and couple to O(R21nR) requires only 
the knowledge of: (i) the Stokes flow fields due to the given body being translated 
in any three non-coplanar directions in a fluid at  rest at infinity; and (ii) the 
Stokes flow fields due to the given body being rotated about any three non- 
coplanar directions in a fluid at rest at infinity. 

As in the case of bodies undergoing purely translational motion (Brenner & 
Cox 1963), it is shown that these formulae take on a more simple form for bodies 
possessing symmetry properties, the force and couple then being expressible in 
terms of the forces and/or couples on the body for the Stokes flows (i) and (ii), and 
not in terms of the details of these velocity fields. 

Two general classes of problems are considered in more detail. The first of 
these is that of finding the force and couple on a non-rotating body of arbitrary 
shape, for which it is shown that the value of the force is the same as that obtained 
by Brenner & Cox (1 963). The second class of problems is that of the rotating 
axially symmetric body in uniform translation. 

As examples of the problem concerning bodies in pure translation, we consider 
that of the uniformly translating spheroid and that of the uniformly translating 
dumb-bell for which explicit formulae are obtained for the force and couple. In 
the former example, it is shown that there exists, in general, a couple of O(R) 
acting on centrally symmetric bodies, whilst in the latter it is shown that the 
force on a body to O(R) is not in general reversed by a reversal of the body 
translation velocity. 

For the class of rotating axially symmetric bodies in translation, we consider 
as specific examples that of the rotating translating sphere and that of an axi- 
symmetric dumb-bell-shaped body in pure rotation about its axis of symmetry. 
In the former example, we obtain a more general form of the results obtained by 
Rubinow & Keller (1961) concerning a rotating translating sphere, and in the 
latter we demonstrate that for an axially symmetric body without fore-aft 
symmetry, a pure rotation about the symmetry axis can, in general, produce 
a force of O(R) on the body directed along its axis, although the body is not in 
translation. Such a force is invariant to the direction of rotation. 

A short discussion is then given of the applicability of the general theory to 
non-steady problems for which it is shown that, in considering the fall under 
gravity of a body of arbitrary shape through a fluid, the positions of equilibrium 
orientation may be found to O(R) from the theory although the general motion 
may not be steady. For such a problem, the general formulae derived for steady 
motion cannot be used to predict the complete body motion, except for very special 
cases for which the body motion may be completely ‘quasi-steady ’. One example 
of such ‘ quasi-steady ’ motion is that of the free fall of a spheroidal body of small 
eccentricity. This problem is considered in detail, it being shown that such a body 
takes up a stable equilibrium orientation with its axis horizontal or vertical 
according to whether it is prolate or oblate. 
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Finally, formulae are given for the force and couple to O(R) on a non-rotating 
body in uniform translation as calculated by the Oseen equations. It is shown by 
the consideration of a dumb-bell-shaped body that the force on a body as calcu- 
lated by the use of these equations is, in general, incorrect to O(R). This rectifies 
an error made in Appendix 2 of the paper by Brenner & Cox (1963), where an 
attempt was made to prove the above statement by the consideration of a slightly 
deformed sphere. 

2. The inner and outer expansions 
We consider a body with a surface B’ of arbitrary shape rotating and/or 

translating in an incompressible fluid a t  rest at infinity in such a manner that the 
motion is steady relative to some inertial frame of reference. Thus we restrict 
ourselves to the following two classes of problems: cZass (a) bodies of arbitrary 
shape in pure uniform translation; and class (b) axially symmetric bodies in 
uniform rotation about their axes, together with a uniform translation in some 
arbitrary direction. 

By choosing an origin of co-ordinates 0 fixed in the body and lying on the axis 
of symmetry for class ( b )  [or anywhere within the body for class (a)], we may 
define the (dimensional) velocity V’ and angular velocity IR’ as being respectively 
the velocity of 0 and the angular velocity of the body relative to non-rotating 
axes moving with 0. 

Define c to be a characteristic body dimension and U to be any characteristic 
velocity which we could take to be equal to either lv’l or lcIR’l. The fluid velocity 
u’ and pressure p’, together with the general position vector r’ (taken relative 
to 0) may then be expressed as dimensionless (undashed) quantities by the 
relations 

u = u‘/U, p = (c/,uU) (pl-p;) ,  r = r’/c, (2.1) 

where p ;  is the constant pressure a t  infinity. 

dimensionless form 
The equations of general fluid motion relative to 0 may then be put in the 

v2u-V~ = Ru.VU, V.U = 0, (2.2) 

with the boundary conditions 

u=IR~hr on B, 

u+-v as T+OC), 

where V and IR are the dimensionless body velocity and angular velocity given by 

v = V l / U ,  IR = W(C/U) .  (2.4) 

B is the body surface expressed in dimensionless form and R the Reynolds 
number defined as (cUp/,u). 

In  solving equations (2.2) with boundary conditions (2.3) we proceed by 
forming inner and outer expansions in a manner similar to that done by Brenner 
& Cox (1963) for a body in pure translation. The details of this procedure are 
therefore not given here. 

40-2 
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The velocity and pressure fields may be expanded in the neighbourhood of 
the body as u = U , + R U , + O ( R ) , )  

which we call the inner expansion. (u,,po) satisfies 

v2u,-vpo = 0, v.u, = 0, 

v2u, - Vp, = u,. vu,, v . u1 = 0, 

u , = S 2 ~ r  on B, 
whilst (u,, p,) satisfies 

u1 = O  on B. 

Defining outer variables by the relation 

the outer expansion may be seen to be of the form 

u = -V+RU,+o(R), 
p = B2Pl + o(R2), 

Pu,+aP, = - v . a u , ,  a.ul = 0 

where (U,, P,) satisfies 

1 U,+O as ?--+a. 

(2.9) 

(2.10) 

The inner boundary conditions on (U,, P,) and the outer boundary conditions 
on (u,,po) and (ul,pl) are determined by the required matching of the two 
expansions. 

It may be shown that the asymptotic expansion for large r of the zeroth-order 
inner approximation (u,, p,) is 

where [s(a)] and [t(a)] are defined by 

I [s(a)] = (a + r.  ar/r2)/r, 

[t(a)] = 2a.r/r3, 
(2.12) 

ip, i, being unit vectors-in the p and p Cartesian directions and F, the Stokes 
force on the body. hpp is a second-order tensor dependent only upon the shape 
of the body. 

The first-order outer approximation (U,, P,) may then be determined from the 
equations (2.10) together with the required matching conditions as 

3 
2 v  

1 u, = --% exp [-a( V? + V .  F)] + - (1 - [1+ +( V?+ F . V)] 

p , - - _  - ;F,.f/P. I x exp [-&(I?+ V. P)]) (F,. a) ?In( V?+ V.  I), 

(2.13) 
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From the matching conditions, the outer boundary conditions on (ul,pl) may 
be obtained, from which the value of the asymptotic expansion for large r ,  of the 
solution of equations of (2.7) may be obtained as 

(2.14) 1 
u , - - -2-( ,'B V .  V) [r( - 3F0 + r. For/r-2)] +&(3F,V2 - V.  F,V)/V 

+ )hpq(V. 0)  (i, . 0 )  [r( - 3i, + r . iqr/r2)] 
+ &-2(Fo. rF, - Pgr + 2(F,. r)2 r/r2] + [s(S)] + O(+),  

p, = + &r2( - 3'; + 2(F0. r)2/r2} + [t(S)] + OW3), 

where S is a constant vector determined by the boundary condition that u, = 0 
on the surface B of the body. 

If we define the dimensionless force F and couple G acting on the body in 
terms of the corresponding dimensional quantities F' and G' by the relations 

F = F ' / ~ T ~ c U ,  G = G ' / ~ T ~ c ' U ,  (2.15) 

then it is seen that they may be written as 

F = F,+RF,+o(R), G = G,+RG,+o(R), (2.16) 

where F, and Go are the Stokes force and couple due to (uo,po), with F, and G ,  
likewise being due to (ul,p1). 

Since (u,,p,) satisfies equations (2.6) with the outer boundary condition that 
u, --f - V as r -+ 00, it is seen that F, and Go are related to V and (see Brenner 
1963 and 19643) in tensor notation, by 

(F,)i  = AijJ$+BijQj, (Go)& = BijF+EijQj, (2.17) 

where Aij = Aft ,  Eij = E,,, Bi5 = Dj,. (2.18) 

3. First-order force and couple 
The values of the fist-order force F, and couple G, acting on the body need the 

knowledge of the asymptotic expansion for ( u , , ~ , )  to order (r2, r 3  for large r .  
They cannot therefore be obtained directly from the expansions (2.14). We 
therefore proceed in a manner similar to that used by Brenner & Cox (1963). 

Consider fist the more general problem concerning Stokes flow (v, q) resulting 
from a given body force field f acting upon the fluid in which there is a solid body 
of arbitrary shape with surface B moving with a velocity V and angular velocity 
51 (relative to an origin 0 fixed in the body and moving with velocity V). Thus 

Vzv-Vq+f = 0, V.v = 0, v = V+QAr on B. (3.1) 

The following restrictions are placed on the vector functionf,: (i) f, = O(re2) as 
r -+ co, and (ii) if fi possesses a term, -2fi say, in r--2 in its asymptotic expansion 
for large r ,  then this term changes sign upon replacing r by -r. v is then of 

v = v*+k+O(r-l) as r + q  
the form 

where k is a constant vector and v* is a vector field which changes sign upon 
replacing r by - r. 
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We now define Uii to be a function of position defined as the ith component 
of the Stokes velocity field resulting from the pure translation of the body with 
unit velocity in thej th  direction in a fluid a t  rest at infinity. Consider the flow 
field Ui = Uij 6, where is any arbitrary vector. This satisfies 

(3.2) 

The quantity Uij is a tensor function of position which may in fact be determined 
from the knowledge of the Stokes velocity fields resulting from the pure transla- 
tion of the body in any three non-coplanar directions. 

By taking the scalar product of (3.2) with v and that of (3.1) with ii, subtracting 
and taking the volume integral of the resulting equation over the fluid contained 
within a large sphere, it  may be shown that the force F on the body B due to the 
flow (3.1) is given by 

I v2ii-vji = 0, v.u = 0, - 
i i = V  on B,  O - t O  as r+co. 

& = Aij(6--kj)+Dijfi * +- insr Uj&&V, (3.3) 

where r is the entire fluid volume. The details of this proof are given in a disserta- 
tion by the author (Cox 1964). 

In  a similar manner we define Oij as the ith component of the Stokes velocity 
field resulting from the pure rotation of the body B with unit angular velocity 
about an axis in the j t h  direction in a fluid at rest at infinity. The couple G on 
the body due to the flow (v, Q) may then be written 

i r  

(3.4) 

The quantity aij is a tensor function of position and may be determined from 
a knowledge of the Stokes velocity fields resulting from the rotation of the body 
about any three non-coplanar axes. 

Returning to the equation (2.7) it  is seen that we may now find the force F, 
and couple G, in terms of Uij and a,, by the use of equations (3.3) and (3.4) with 
f = - (uo.Vu0), when i t  is noted that by the linearity of the Stokes equations, u0 
itself may be written as 

(uo)* = ajp f i p  + U j p  v, - y. (3.5) 

From the asymptotic form of u1 given by (2.14), it  is seen that k must be taken 
to be k = &3FO V z  - V. P,V)/ V .  

Thus, after some manipulation of the volume integrals and by the use of the 
asymptotic forms of uo, Uij, a,, for large values of T (see Cox 1964), one finally 
obtains formulae for F, and G, which, when combined with equations (2.16) and 
(2.17), yield the values of F and% to O(R). Hence 

Fi = 1&+2Fi+0(R), (3.7) 

where '4 = (Aij5 + oij Qj) - 2&4ij{3AjkG Vz 
+ 3Djk nk V2 - (%A k i q )  4 - ( & DM Qi) q}/ p, ( 3 . 8 ~ )  

and 
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or alternatively, if V + 0, 

‘4 = (1/6n) R(Sip - Vz) [KSgR Rl 0, + 2K5zT QlV, + KzzT  KV,] 
- (l/6n Vz) R x  !2,[Kp”lR Rr R, + 2K2zT QzV, + Kg$T&V,], (3.8~) 

while similarly Gi = 1Gi+2Gi+o(R), (3.9) 

where ‘Gi = (Bij4 + Eij Qj) 

-&RBij{3Ajk& v2 + 3Bjk i& v2- (v’,AkIK)q - ( & o k l  Rl)v)/ v (3.10~) 

and = (1/6~)R[K$~RRg!2sz,+ 2K$gT R,V,+K$zTqVm], (3.10b) 

or alternatively, if R 0, 

= (1/6n)R(siP- RiR,/R2) [K~~RRIR ,+2K~~TR,V ,+K2~TqV, ]  

- ( 1/6nRz) RV,Ri [ K s i R  Rl R, + 2K:gT QlV, + KFgTyVm]. (3.10~) 

The various third-order tensors occurring in these relations may be mitten in 
terms of ;iiij and aii as 

in which the third-order tensor functions ejki and djk. are respectively defined t0 
be the rate-of-strain tensors corresponding to the flows Tiii and aii, i.e. 

ejki = 6(4i, k + zki, j) 6jki = k + j). (3.12) 

The quantities (-zGzi) and (-z%i) are respectively the terms in the asymptotic 
expansions of and $, for large T which are homogeneous in +. Thus the 
surface integrals in (3.11) which are taken over a large sphere 8, of radius L are 
in fact independent of the actual value of L. 

4. Force and couple on body to O(R2 In R) 

form (see Brenner & Cox 1963) 
The form of the inner expansion for (u,p) may to O(Rz) be shown to take the 

(4.1) i u = uo+Ru,+(R21nR)uz+R2iiz+o(R2), 

p = p0+Rp1+(Rz1nR)p2+R2~,+o(R2),  

where (tiz, pz) satisfies the equations 

V%, - vpz = uo. vu, + u,. vuo, v .ti, = 0, (4.2) 
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and (u,, p2)  the Stokes equations 

V2u2-Vp2 = 0,  ' 7 . ~ 2  = 0, (4.3) 

u,=O on B and u,+d as r+m, (4.4) 

with the boundary conditions that 

where d is a constant vector determined by the term involving lnr in the 
asymptotic expansion of 6, for large values of r. Such a term is of the form 
d In r .  

Thus by using the asymptotic expansions (2.11) and (2.14) for u, and u, one 
may evaluate the asymptotic expansion for (u, . Vu, + u, . Vu,) and hence find 
that term in the asymptotic expansion of u, which involves lnr  (see Cox 1964). 
Thus we obtain the value of d as 

d = #-31Fo.VF,+7P~V}. (4.5) 

The force F and couple G acting on the body must be of the form 

I (4.6) 
F = F,+RF,+(R21nR)F,+O(R2), 
G = Go + RG, + (R2 In R) G, + O(R2),  

where F, and G, are the result of the flow field (u2,p2).  As we have seen, this 
flow field is just the Stokes flow of the fluid past the body with velocity d. Hence 
it follows that 

(4.7) (P')i = -Aijdj, (G2)i = -Bijdj .  

By making use of the equations ( 4 4 ,  (4.6), (4.7) and the values of F,, Go, F, 
and G, already obtained we may write down the value of F and G to O(RZln R) 
immediately as 

where 
= ll( + + O(R2), Gi = lGi + 'Gi + O(R2), (4.8) 

'& = (AijVj + Dij Qj) - &RA4j{3 P(Aj,V, + Djk Q,) 

- (V,&z%+ W k l  Qz) v,}/ 'v 
4j(Aj,V, +Dim Q,) + &dR21nR) {31(%&%+ 6% 

- 7(AkzJi+DkzQz) (A~%+Dk,Q,)Aij&l (4.9) 

and lGi = (BijT$ + Eij Qj) - &RBij{3 V2(Ajk& + Djk 0,) 

- ( y k A  kZ%+ GDkZ ' t )  ?I/ 
&(R2 In R) {31(& A k z v  & Dki  a,) % -I- D i m  0,) 

- 7(AktG+ D, f i t )  V k m %  + %,a,) &VjI, (4.10) 

,Fi and 2Gi being given respectively by the equations (3.8b,c) and (3.10b,c). 

5. General discussion 
In  the formulae (4.8), (4.9) and (4.10) for the force and couple on the body to 

O(R21nR), it should be noted that if we reverse the velocity V and angular 
velocity GI of the body, the force IF and couple 1G are reversed, whereas 2F and 
zG remain unaltered. It was to give IF, lG and 2F, ,G these properties that the 
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force F and couple G were so divided into these parts. Whereas lF and lG may 
be calculated solely from a knowledge of the tensors A,,, Bi j ,  Dij and Eij (i.e. the 
values of the forces and couples on the body due to the Stokes flows Tiij and a,,), 
it  is necessary to know the complete fields Tiij and aii in order to calculate 2F 
and 2G. 

The force 2Fi (for V + 0) given by equation (3.86) is seen to consist of the 
sum of the forces 

+(1/6m) R(6ip-~:,/V2)[K?gRRlSZm+2K?gT Q;2,Vm+K,T,T,T&Vm] 

and - ( l / S m )  R(‘V, S Z p /  7’) [KgZR SZ, SZm + 2K2ET SZi Vm+ KZZT 6Vm], 
the former being a Eift force (perpendicular to 6) and the latter a drag force 
(parallel to ‘V,) which vanishes for GI = 0. 

In  a similar manner aGi (for S2 =t= 0 )  given by equation ( 3 . 1 0 ~ )  consists of the 
sum of the couples 

+ (1/6m) R(6ip - Q&2p/s22) [K,”c”m” Q, SZm + 2K;gT SZzV, + K?gTKVm] 
and - ( 1 / 6n)  R( QiV,/Q2) [Kpl;”m” 0, Qm + 2KgfiT QtVm + K?gT Svmlt  
the former being perpendicular to S2 and the latter parallel to GI and vanishing 
for V = 0. 

Should the body B possess certain types of symmetry properties, then restric- 
tions are automatically imposed upon the form which may be taken by the 
various tensors occurring in the equations (3.8) and (3.10) for the force and couple 
on the body (see Brenner & Cox 1963) and Cox (1964). The form the restrictions 
take for a particular tensor and for a given body symmetry property depends on 
the order of the tensor and whether it is a real tensor (i.e. a relative tensor of 
even weight) or a pseudotensor (a relative tensor of odd weight). We note that 
in the relations (3.8) and (3.10) the types of the tensors occurring are: 

(i) second-order real tensors, these being Ay and E ,  for which there exist 
the relations 

A ,  = Aji, Eij = Eji; (5.1)  

(ii) second-order pseudotensors, these being Bij and Dij; 

(iii) third-order real tensors, these being KFgR, KggT, KFgT for which 

Kplm TRR = K ; ~ R ,  KZ‘ZT = KTTT. pml 9 (5 .2 )  

(iv) third-order pseudotensors, these being KggT, KgZR, KZZT for which 

Kplm pmE (5.3) RRR = KRRR pd , KFgT = KTTT. 

Hence, for bodies possessing symmetry properties one may write the equations 
(3.8) and (3.10) for F and G in a simplified form. In  particular one finds that 2F 
or 2G (or certain of their components) vanish for certain types of symmetric 
bodies thus enabling the calculation of F and G (or certain of their components) 
from the values of the tensors Aij, Bij, Dij, Eij alone, the calculation of Ti,, and 
a,, and of the various third-order tensors Kj?,ZR, K;gT, etc., then being not 
required. 
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6. Two classes of problems 
We now examine the forms taken by the formulae (3.8) and (3.10) for the two 

classes of problems described in 5 2. The first of these (class (a)) is that of a body 
of arbitrary shape in pure translation whilst the second (class (b ) )  is that of an 
axially symmetric body in translation in any direction together with a rotation 
about its symmetry axis. 

Class (a)  

For non-rotating bodies, the formula for the force F takes the form 

q = 1 q  + 2 q  + O(R2), (6.1 a)  

where ll$ = AijG- ( 3 / 1 6 V ) R { 3 V 2 A i , - S i , ( G A ~ ~ ~ } ~ , , V ~  

+&(R2lnR) {31Aij(GAk16) - 7s i , ( sAk lAkmV, ) }A , , v ,  (6m1 b, 

and 

whilst that for the couple G takes the form 

'4 = (1 /6n)  R(Sjp - GQ/ V') ~ V m K ~ ~ T ,  (6.1 c )  

Gi = 'Gi + 'Gf + O(R2), ( 6 . 2 ~ )  

where 'G, = BjjV,- (3/16V)RBi,{3V2A,,V,-(~7kAkI~)V,} 

-k &dR2 In R, B i j {  (&A k l q )  7 k A j m V  - (6AMAkm%) 5) (6.2 b,  

and 'Gi = (1/6n)RqVmK$ET, ( 0 . 2 ~ )  

the tensors K$gT, K$ZT being given by the equations (3.11). 
The value of F so obtained is in complete agreement with that obtained by 

Brenner & Cox (1963) and all the results given there regarding the vanishing of 
2F (or certain of its components) for symmetric bodies still hold. However, in 
addition we can now set up, by the use of the fact that is a third-order 
pseudotensor, a list of body symmetry conditions implying the vanishing of 'G 
(or certain of its components); e.g. (i) 'G = 0 for all V if the body transforms 
into itself under rotations of Qn about axes 1 and 2 ,  (ii) 'G, = 2G3 = 0 for V lying 
in plane 1 if the body transforms into itself under either a rotation of 7~ about 
axis 1, or a reflexion in plane 1. A more complete list is given by Cox (1964). 

Class (b)  
We consider now a body axially symmetric about an axis 1 which rotates with 
an angular velocity IR = (al, 0 , O )  and translates with a velocity V which, by 
a suitable choice of axes, may be written as V = (K, V,, 0). From the equations 
(3.8) and by the forms taken by the various tensors for axially symmetric bodies 
it may be shown that the force F on the body is the same as that for a translating 
non-rotating body except that there is now an additional force F* given by 

(6.3) I Pf = (1/6n)  R{KgTR( 1 - V:/ V2)  + 2KgTT V;sZ?/ V'}, 
P t  = ( ~ / ~ ~ T ) R { - K ~ ~ ~ Q ; K & / V ~ -  2KfiTT Q:&G/V'}, 
Pg = (1 /67~)  R{2K3fT a,&). 
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In  a similar manner, it may be shown that the couple G is the same as that 
for the non-rotating body with an additional couple G* given by 

(6.4) 1 G;T = El1 511 + (1/6n) R{ - K W  Q1 

GX = (l /6n) R{ + 2Kg%T Q,V,}, 
Gg = 0, 

the term Ell Ql occurring in GT being the Stokes rotational drag. 

couple G* due to the rotation, reduce to 
For an axially symmetric body with fore-uft symmetry, the extra force F* and 

3’: = B’g = 0, FZ = (l/6n) R{2KzfT Q1YJ (6.5) 

and G: = El1Ql, GX = Gg = 0. (6.6) 

Thus the effect of rotation on such a body is to produce a lift force on the 
body in the direction of axis 3. Rubinow & Keller (1961) obtained the value of 
this force for the particular case of the body being a sphere, its velocity and 
angular velocity being respectively V = (0, V,, 0) and f2 = (al, 0,O). This problem 
will be considered in greater detail in 9 8. 

A rotating axially symmetric body (without fore-aft symmetry) which is not 
translating relative to the fluid at  infinity? possesses a force and couple acting 
upon it, their complete values (see equations (6.3) and (6.4)) being given by 

Fl = (1/6n) RKfERQ?+O(R2), P2 = Fa = 0 (6.7) 

and Gl = EllQl+O(R2), G, = G3 = 0, (6.8) 

the axis of the body and of the rotation being taken as the axis 1. Thus there 
exists a force proportional to RQ? acting on the body in the direction of its axis 
which is unaltered by a reversal of the angular velocity. The couple on the body 
to  the order in R considered is just the Stokes couple for the given rotation. 

7. Two examples of class (a) problems 
(i) Example 1; A spheroid in pure translation 

For a centrally symmetric body in pure translation the complete force F and 
couple G acting upon it are 

+~ .a (R21nR){31A, (~ : ,A ,~ ) -  7aij( ,V~,A,A~,V, ) }A, ,~~+O(R2) ,  (7.1) 

For such a body, we note that whereas the Stokes couple is identically zero, 
there is in general a couple of O(R) acting on the body. This we shall calculate 
for a body whose surface is that of a spheroid of small eccentricity. Using 

t For a body not translating relative to a fluid at rest at infinity, the velocity in the 
outer region of expansion is of the form 

u = RU,+o(R),  
where u, is the S.%kea velocity due to a point force. Hence the value of k is zero. The 
equations (4.8) t o  (4.10) may therefore be used without modification when V = 0. 

I 
4 = AuF- (3/16P) R{3VZA,j-G~j(~’,A,~)}Aj,Tr, 

Cr, = ( 1 / 6 n ) R K ~ ~ ~ ~ , V ~ + 0 ( R 2 ) .  
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rectangular Cartesian co-ordinates (r,, r,, r,) with origin fixed in the body, we 
assume the body surface B to have the (dimensionless) form 

r = 1++3&(:)), 

the term r3 a2( l/r)/ar; being a surface harmonic of order two. The parameter 8 is 
assumed so small that squares and higher-order terms may be neglected. Such 
a surface is a spheroid axially symmetric about axis 1 .  

We may now choose our axes such that the velocity V of the body is 
( V COB a, V sin a, 0 )  a then being the angle between the translation velocity and 
the axis of symmetry. It may then be shown from equations (6.2) that the 
couple G on the body is given by 

G, = G, = O(R2), G, = (1 /37~)RK5$~V~s inacosa+O(R~) .  (7.3) 

G, and G, must in fact be zero to all orders in R by symmetry. 
By making use of the results obtained by Brenner (1964a) for the Stokes 

flows due to a slightly deformed sphere in translation or rotation we may obtain 
the values of Tiij and Qij for a body whose surface is that described by equation 
(7.2). These, when substituted into the equation for KEZT (see equations (3 .11)) ,  
yield after a long and tedious calculation (see Cox 1964) 

where all terms of O(e2) have been neglected and use has been made of the 
orthogonality properties of spherieal harmonics. Hence the couple on the body is 

GI = 0, G,  = 0, G, = - BReV2 sin a cos a + O(R2). (7.5) 

Thus we see that in general there does exist a couple of O(R) on a centrally 
symmetric body in pure translation. 

In  Q 9 we shall consider the free fall of a body with surface B given by (7.2). 
For such a motion it will be shown that the equations (7.5) may be used, although 
the fluid motion is then not steady. 

(ii) Example 2: A dumb-bell-shaped body in translation 

We consider here an example to show that for an arbitrary body in pure transla- 
tion, the force F acting upon it, given by equation (6 .1a) ,  is such that it may have 
a component of lift which is not reversed by a reversal of V (i.e. that 2F ia non- 
zero). An attempt was made to prove this result in Appendix 2 of a paper by 
Brenner & Cox (1963) in which an error occurred.t However, the general result 
is correct as will be shown by the following example. 

Consider a dumb-bell-shaped body defined in dimensional variables as con- 
sisting of two centrally symmetric bodies P and Q whose dimensions are of the 

t This error occurred on page 593, line 3, which should have read 

The argument following this statement is therefore rendered invalid. 

H(a,a,. . . a,) = raU-l (homogeneous polynomial of degree u in pi ) .  
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same order of magnitude a and are connected by a very thin rigid rod of width 
of order d and length b, so as to form one complete composite body. It is assumed 
that 

so that one may neglect the effect of the joining rod and assume that the mutual 
effect of the two bodies P and Q is small. Then it may be shown that for such 
a body the values of the components of the tensors KZZR, KZgT and KZZT may 
be calculated and hence the value of ,F (see Cox 1964). 

Choosing rectangular Cartesian axes with the 0, axis lying along PQ, we 
restrict ourselves to bodies in which the component bodies P and Q are ellipsoids 
of revolution with their axes of symmetry lying in the plane 3 (i.e. the plane 
containing axes 1 and 2) in such a manner that the body Q is the mirror image 
of P in a plane which is the perpendicular bisector of the line PQ. It may then 
be shown (Cox 1964) that the force F (made dimensionless by the length b )  acting 
on such a body is 

where lF is given by 

d < a < b ,  (7.6) 

F = 1F+zF+O(R2), 

(7.7) 

(7.8) 

1 lF, = A,, V - +R(All)2 V2 + &(R2 In R) (A,,)3 Tr3, 

'F, = 0, IF3 = 0 

I and ,F by 2Fl = 0, 'F3 = 0, 

,F2 = %(a/b)2RV2Ag(3A$- 2 A 9 ,  

where A5 is the value of the Stokes resistance tensor (made dimensionless by the 
length a)  for the body P alone. The quantity A,, occurring in (7.7) is 

A,, = 2(a/b) A g  + O(a/b),. (7.9) 

Thus the value of A6 may be chosen such that 2F2 is non-zero, thus giving us our 
desired result. It should also be noted that in the above example 2F is non-zero 
despite the fact that IF is a pure drag force to O(R21nR), the velocity V being 
in the direction of a Stokes principal axis of resistance (i.e. in the direction of 
a principal axis of the tensor Aij) .  Thus we have shown that even for translation 
in the direction of a principal axis of resistance we may have a lift force on a body 
of O(R) which is unaltered by a reversal of the direction of translation. 

8. Two examples of class (b) problems 
(if Example 1 : A rotating trans~at~ng sphere 

Consider a sphere being translated with velocity V = ( V cos 8, V sin 8 , O )  and con- 
strained to rotate with angular velocity 51 = (Q, 0 , O ) .  Then by the use of equa- 
tions (6.5) and (6.6), it may be seen that the complete force and couple on the 
sphere are given by 

F, = V cos 8{A,, - #RAE + &(R2 1nR) A!,} + O(R2), 
F, = V sin B{A,, - #RA:, + za(R2 In R) Atl} + O(R2), 
F3 = (1/6n) R{2K$'TQVsin8}+O(R2), 

(8.la) 

(8.1 b )  

use having been made of the form taken by the tensors A+,., Bij, etc., for a sphere. 

1 
and G, = Ell Q + O(R2), G, = G3 = O(R2), 
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The value of KGfT may be found from the relations (3.1 l),  the tensor function 
iiij and a,, being easily obtainable for a sphere. Also, since A,, = - 1 and 
El, = - Q, we obtain finally 

(8.2a) 

(8 .2b)  

When the velocity of particle translation and its axis of rotation are perpendicular 
(i.e. 0 = in) the above values for F and G are in complete agreement with 
Rubinow & Keller's (1961) results for this case. 

1 Fl = - V cos f3( 1 + #R + &R2 In R)  + O(R2), 
F2 = - Vsin8(1++R+&R21nR)+O(R2), 
F! = + QRQ V sin 8 + O(R2), 

and G , - _ _  - tQ+O(R2) ,  G,  = G,  = O(R2). 

(ii) Example 2: a dumb-bell-shaped body in pure rotation 

We consider now an axially symmetric body (without fore-aft symmetry) 
consisting of a dumb-bell as defined in Q 7 (example 2) in which the component 
bodies P and Q are spheres of radii hPa and hQa respectively, hp and A* being 
unequal and of order unity in magnitude. Suppose such a body is rotating about 
its axis of symmetry with angular velocity a, the velocity of translation V being 
zero. Then, if we take axes as before with the axis 1 lying along PQ, the force F 
and couple G on the body are given by the equations (6.7) and (6.8). The value of 
the tensor component KTZR may be shown to be (Cox 1964) 

KEfR = 2.rrhPhQ((hQ)4 - (hP)3 (a/b)6 + O(a/b)'. 

Hence 

Thus there exists a force on the body in the direction of its axis of symmetry 
from the smaller to the larger sphere. It should be noted that this force is 
proportional to Qa and therefore acts in the same direction along the axis, 
whatever the direction of body rotation. 

Fl = QhPhQ((hQ)4 - (hp)4} (a/b)6 RQ2 + O(R2), F2 = P3 = 0. 

9. Quasi-steady problems 
The equations obtained in $4 for the force and couple on a body to order 

(B2 In R) have been obtained on the assumption that the motion is steady relative 
to some uniformly translating frame of reference. However, the theory would 
be expected to remain valid for non-steady motions so long as they are such that 
their time scales of the variations of the velocity V and body orientation are very 
large, i.e. in our dimensionless variables dV/dt and S2 are very much less than 
unity. Such motions we shall call quasi-steady. 

Consider a body moving through a fluid with a given external (dimensionless) 
force F*( = F*'/67r,ucU) and couple G* ( = G*'/67r,uc2U) acting upon it (about an 
origin fixed in the body at its centre of mass). The equations of motion for the 
body then take the dimensionless forms 

(9.1) 

where p8 is a characteristic density of the body, M is the dimensionless mass of 
the body (= W/p8c9) ,  It, is the dimensionless inertia tensor of the body 

I 6 ~ ( 4  + FT) = (p,/p) RM dK/dt,  
6n(Gi + ',*) = (p8/p) '('ij Qj)/dt ,  
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( = I;j /pscs) about the origin and Ft and Gi are the dimensionless force and couple 
acting on the body about the origin as a result of the fluid motion. 

Under conditions of equilibrium orientation (i.e. for IFZ = 0 and V independent 
of time) the equations of motion (9.1) become 

&+FF = 0, Gi+GT = 0, (9.2) 

where I$ and Gi are given to O(R21n R) in $ 4, since under such conditions the 
fluid motion is steady. However, the full equations (9.1) may be used in con- 
junction with the values of Ti and Gi given in $ 4 for motions which are arbitrarily 
near an equilibrium state since for such motions dV/dt and SL may be made 
arbitrarily small (of order 6, say), the effect of non-steadiness of fluid motion then 
being of order RS. (Note: care must be taken to include all terms to whatever 
order one is working.) 

There are circumstances in which the equation (9.1) may be used in con- 
junction with the values of F and G given as in $4, to give the complete body 
motion. For example, consider a body which is undergoing a motion in which 
d&/dt and Qi are both of order 6 where 6 is a small parameter. Then if R is small 
and pJp so large that (RpJp)  is of order unity (e.g. a solid particle falling through 
a gas), we may use the expression in $ 4  for & and G, in conjunction with (9.1) so 
long as all terms have been included to the order to which we are working. 

As an example of a body exhibiting such quasi-steady motion we consider the 
free fall in a fluid of a spheroidal-shaped body of uniform density whose surface 
is described by equation (7.2). By taking the origin of co-ordinates at the centre 
of such a body, the equations of motion (9.1) yield 

6nF: + 6 ~ 4  T$ - (3/ 16 V )  R .6n{3 V2Aij - Si,(G A ,  K)}Aj, V, 

+ 2R{K$'ET SZ,V,) = (p , /p)  RMdKfdt, (9.3) 

6nEi,Q,+R{KER Q,Q2,+K;zTqV,) = (p,/p)Rd(&QjW, (9.4) 

where we have neglected the terms in (R2 In R )  in the formulae for I$ and Qi. It 
will now be shown that for such a motion that SL and dV/dt are small thus verifying 
the assumption that the effects of non-steadiness may be neglected. 

We suppose that p8/p is large such that (p,/pR) is of order unity. Assume that 
S2 = 0(6), where 6is a small parameter. The time required for the body to change 
its orientation by an amount of order unity will then be O(6-l). Thus 
dS2/dt = O ( P )  and dV/dt = O(6). Hence, in equation (9.4) the term EijQj is of 
order 6, the term R K E R  Ql Q, is of order RP, the term RKBz*I$V, is of order R, 
and the term (p,/p)Rd(l,,Q,)/dt is of order P. Therefore if this equation is to be 
satisfied 6 must be taken equal to R. Thus the time scale for the change in body 
orientation is R-l. We shall therefore write 

t = R-lf ,  (9.5) 

and expand V and SL in terms of R as 

K = (GI, + R(V,), + o(R), 
Q, = R( QJi + o(R). 



the effect of the unsteadiness of the motion being of order R2. Equation (9.7) 
gives the velocity V, in terms of the body orientation, which when substituted 
into (9.9) gives the angular velocity (a,). This in turn determines the change in 
body orientation, thus giving Ql and V, as functions of time. The value of V,, 
when substituted into (9.8), gives V, as a function of time. 

Take axes fixed in our spheroidal body such that the axis 1 lies along the 
symmetry axis and the force vector F* lies in the plane 3 (containing axes 1 and 2), 
the assumption here being made that, throughout the body motion, the symmetry 
axis always remains in the same vertical plane. We let a be the angle between 
the axis 1 and the gravitational force F*. Since, for our body, 

A ,  = - sij + O(s), (9.10) 

it  follows from (9.7) that the angle between F* and V, is of order e. Hence using 
the value of the tensor K$zT obtained in $ 7  the equation (9.9) yields 

(9.11) 6nEij( Q,), + a;,( -#re) V2  sin a cos a = 0,  

where terms of O(e2) have been neglected. 
For the spheroid 

E . .  = -- 
21 Vij + O ( 4 ,  (9.12) 

from which it may be deduced that the angular velocity 51 = RQl + o(R) of the 
body is of the form (0, 0,  !&), where 

Q3 = --- ::,,Re V2 sin a cos a + o(R). 

Since Q, = - da/dt, it follows that we now have an ordinary differential equation 
for a which may be solved to give 

t ana  = Aexp(&$ReV2t), (9.14) 

where A is an arbitrary constant determined by the value of a a t  t = 0. 
Thus there are two positions of equilibrium orientation, one for which the 

body axis is vertical (a = 0 )  and one for which it is horizontal (a = in). The 
equilibrium orientation for which a = 0 is stable for E < 0 and unstable for 
e > 0, whereas that for a = +n is unstable for e < 0 and stable for e > 0. Hence 
a body whose shape is that of a spheroid of small eccentricity would, upon falling 
through a viscous fluid, take up a position with its axis horizontal if it is prolate 
(i.e. if e > 0) ,  or a position with its axis vertical if oblate. 

Brenner ( 1 9 6 4 ~ )  has shown that the resistance tensor Aij  for this particular 
example is given by 

(9.15) A,, = - 1 + i e  + 0 ( € 2 ) ,  A,, = A,, = - 1 - --8 : +0(e2), 
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all other A ,  being zero. Thus the body takes up an orientation which makes its 
resistance to motion a maximum (i.e. an orientation which makes its velocity 
a minimum). 

It is seen that the equation (9.14) is unaltered if (p,/p) is of order unity, the 
only difference now being that the term on the right-hand side of equation (9.8) 
may be omitted. 

10. Oseen force and couple on body to O(R) 
For the case of the sphere (Proudman & Pearson 1957) and spheroid (Breach 

1961), the value of the force to O(R) as calculated by the singular perturbation 
technique is identical with that predicted by the classical Oseen equations, 
despite the fact that the latter do not furnish the correct asymptotic behaviour 
to O(R) in the velocity field. We therefore consider the Oseen equations for a 
non-rotating body which may be written in the dimensionless form 

V 2 u - V ~  = -RV.Vu, V.U = 0 (10.1) 

u=O on B, u + - V  as r+m. (10.2) 

with the boundary conditions 

The force i? and couple G ,  say, acting on the body due to such a velocity field 
may be calculated to O(R) ,  in a manner similar to that of § 3. Hence we obtain 

4 = l q + + z + o ( R ) ,  (10.3) 
(see Cox 1964) 

where '4 = AijJ$- (3/16V)RAij{3AjkGV'- (GAklg)J$},} 
(10.4) '4 = (1/6n) R(Sip - qVp/  V2) {R..gTI$Vm), 

and CIi = lai + =ai + o(R) (10.5) 

(10.6) 

- 

where '4 = ~ ~ j J $ - ( 3 / 1 6 V ) R ~ ~ ~ { 3 ~ j k G  V2- (GAklq )5 } , }  
'CIi = ( 1 /6n) R{.E$zT qVm}, 

the third-order tensors E5gT and EggT being given by 

These solutions should be compared with the results given in $ 3  for the full 
Navier-Stokes equations. Thus it is observed that for non-rotating bodies the 
formulae for the force and couple to O(R), as calculated from the Oseen equations, 
is identical with that obtained from the full Navier-Stokes equations except that 
the third-order tensors K$sT and K$zT (given by equations (3.11)) are replaced 
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by different tensors E$gT and E$:T. It should also be noted that the force on 
the body as obtained from the Oseen equations and given by (10.3), (10.4) and 
(10.7) is the same as that given by Brenner & Cox (1963). For bodies with the 
symmetry properties for which KgzT = 0, one may conclude also that E$zT = 0 
(see Brenner & Cox 1963), showing that for such bodies (e.g. a sphere or a 
spheroid) one may conclude that 

- 
F = F + o(R). (10.9) 

Similarly for certain other types of body symmetry for which K$zT = 0, we 
have @ZT = 0 (see Cox 1964), showing that for such bodies 

G = G + o(R). (10.10) 

However, even for non-rotating bodies considered in this section, we might have 
the forces P and F not equal to O(R), i.e. the force on the body as calculated by 
the Oseen equations incorrect to  O(R). An attempt was made (Brenner & Cox 
1963, Appendix 2) to  give an example of a body for which F + F by the considera- 
tion of a body whose shape was a slightly deformed sphere. However an error 
was made which we will now rectify by considering a dumb-bell-shaped body 
for which it will be shown that the lift force on it is incorrect to O(R) as calculated 
by the use of the Oseen equations. 

Thus we again consider the dumb-bell-shaped body defined in $ 7  (example 2) in 
which the component bodies P and Q are ellipsoids of revolution with their axes 
of symmetry lying in the plane 3 (PQ defining the axis 1). However we do not 
take this time the body Q to be the mirror image of P in the perpendicular 
bisecting plane of PQ. Thus if we take 

S2 = O  and V =  (V,O,O), (10.11) 

then, by the symmetry of the body, it is seen that the value of (F - P) correct to 
O( R )  is given by 

P1-Pl = 0, F3-Ps = 0, P!-F2 = (1/6~)RV2(K~;TT-EZTT). (10.12) 

By using the values of the tensors K$zF andKzzT given in the equations (3.11) 
and (10.7) it may be shown after a long calculation that the shapes and orienta- 
tions of the component bodies P and Q may be chosen so as to make the quantity 
(KgTT -RZTT) non-zero (see Cox 1964). Thus the force P on the body as calcu- 
lated by the classical Oseen method is to O(R) different fiom the force F as 
calculated by the singular perturbation method. Therefore it may be concluded 
that, although the classical Oseen method gives the correct drag to O(R), it does 
not in general furnish the correct value for the Zijt force. 

The author is grateful to the Department of Scientific and Industrial Research 
for a Research Studentship. Thanks are also due to Dr J. R. A. Pearson, University 
of Cambridge, and to Prof. H. Brenner of New York University for their interest 
and encouragement. 

Part of this work was supported by a grant from the National Science 
Foundation (Grant no. GK-56). 



Motion of aparticle at small Reynolds numbers 643 

REFERENCES 

BREACH, D. R. 1961 J .  Fluid Mech. 10, 306. 
BRENNER, H. 1963 Chem. Enqng Sci. 18, 1. 
BRENNER, H. 1964a Chem. Engng Sci. 19, 519. 
BRENNER, H. 1964b Chem. Engng Sci. 19, 599. 
BRENNER, H. & Cox, R. G. 1963 J .  Fluid Mech. 17, 561. 
Cox, R. G. 1964 The motion of solid particles in viscous fluids. Ph.D. Thesis, Cambridge 

PROUDMAN, I. & PEARSON, J. R. A. 1957 J .  Fluid Mech. 2, 237. 
RUBINOW, S. I. & KELLER, J. B. 1961 3. Fluicl Mech. 11, 447. 

University. 

41-2 




